On a dual property of the maximal operator on weighted variable L^{p} spaces

نویسندگان

  • Andrei K. Lerner
  • ANDREI K. LERNER
چکیده

where the supremum is taken over all cubes Q ⊂ R containing the point x. In [5], L. Diening proved the following remarkable result: if p− > 1, p+ < ∞ and M is bounded on Lp(·), then M is bounded on L (·), where p′(x) = p(x) p(x)−1 . Despite its apparent simplicity, the proof in [5] is rather long and involved. In this paper we extend Diening’s theorem to weighted variable Lebesgue spaces L p(·) w equipped with norm ‖f‖ L p(·) w = ‖fw‖Lp(·) . We assume that a weight w here is a non-negative function such that w(·)p(·) and w(·)−p(·) are locally integrable. The spaces L w have been studied in numerous works; we refer to the monographs [3,6] for a detailed bibliography.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition

‎Some functional inequalities‎ ‎in variable exponent Lebesgue spaces are presented‎. ‎The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non‎- ‎increasing function which is‎‎$$‎‎int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleq‎‎Cint_0^infty f(x)^{p(x)}u(x)dx‎,‎$$‎ ‎is studied‎. ‎We show that the exponent $p(.)$ for which these modular ine...

متن کامل

Weighted Composition Operators Between Extended Lipschitz Algebras on Compact Metric Spaces

‎In this paper, we provide a complete description of weighted composition operators between extended Lipschitz algebras on compact metric spaces. We give necessary and sufficient conditions for the injectivity and the sujectivity of these operators. We also obtain some sufficient conditions and some necessary conditions for a weighted composition operator between these spaces to be compact.

متن کامل

Extension of Hardy Inequality on Weighted Sequence Spaces

Let and be a sequence with non-negative entries. If , denote by the infimum of those satisfying the following inequality: whenever . The purpose of this paper is to give an upper bound for the norm of operator T on weighted sequence spaces d(w,p) and lp(w) and also e(w,?). We considered this problem for certain matrix operators such as Norlund, Weighted mean, Ceasaro and Copson ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017